Geometry

Review 2.1 - 2.4

~

You need your notebook and whiteboard stuff
biconditional statement:
a biconditional statement is a way to write TWO conditional statements using only one statement.

a biconditional will (usually) have the phrase "if and only if" between the hypothesis and conclusion

Ex. An angle is acute if and only if its measure is less than 90°.

This biconditional statement says...

*If an angle is acute, then its measure is less than 90°. *

AND

If the measure of an angle is less than 90°, then it is acute.

A true biconditional statement is one in which both statements are true.
Example: Make a conjecture about the next item in the sequence.

(1) 2, -6, 18, -54, ... 162

(2) 1, 1, 2, 3, 5, 8, 13, ...

1 + 1 = 2
1 + 2 = 3
2 + 3 = 5
8 + 13 = 21
Example: Make a conjecture based on the given information. Draw a figure to illustrate your conjecture.

\[\overline{AB} \text{ bisects } \overline{CD} \text{ at } K. \]
Example: For the given statement, determine whether the following conjecture is true or false. Give a counterexample if it is false.

Given: \(\angle 1 \) and \(\angle 2 \) are supplementary angles.

Conjecture: \(\angle 1 \) and \(\angle 2 \) form a linear pair.
Example: Draw a Venn diagram to represent the following conditional statement.

All dogs drink water.

If you are a dog, then you drink water.
Example: Write the following conditional statements in if-then form.

1) Math teachers love to solve problems.
 IF YOU ARE A MATH TEACHER,
 THEN YOU LOVE TO SOLVE PROBLEMS.

2) Vertical angles are congruent.
 IF YOU HAVE VERTICAL ANGLES,
 THEN THEY ARE CONGRUENT.
Example: Write the converse, inverse, and contrapositive of the following conditional statement, then state the truth value of each.

All triangles are polygons.

Converse:

If a figure is a triangle, then it is a polygon. \(\text{T} \)

Inverse:

If a figure is a polygon, then it is a triangle. \(\text{F} \)

Contrapositive:

If a figure is not a polygon, then it is not a triangle. \(\text{T} \)
Example: Determine whether a valid conclusion can be made from the following statements. If so, write the conclusion. Otherwise, write no conclusion.

1) If you interview for a job, then you wear a suit.
2) If you interview for a job, then you will get a job offer.

No conclusion

1) If an angle measures $< 90^\circ$, then it is acute.
2) If an angle is acute, then it is not obtuse.
Example: Determine if statement (3) follows from statements (1) and (2). If it does, write *valid conclusion*. If not, write *no valid conclusion*.

(1) If it snows outside, you will wear your winter coat.
(2) It is snowing outside.
(3) You will wear your winter coat.

(1) Two complimentary angles are both acute angles.
(2) \(\angle 1 \) and \(\angle 2 \) are acute angles.
(3) \(\angle 1 \) and \(\angle 2 \) are complimentary.