Example:

a. Name all planes that are parallel to plane ABD.
 - EHG (same)

b. Name all segments that are parallel to CG.
 - EF, DH, and AE

c. Name all segments that are skew to EH.
 - EF, CG, BD, CD, and AB

Exercises

For Exercises 1–3, refer to the figure at the right.

1. Name all planes that intersect plane OPT.
 - MNO, NUT, RST, MRS, MST

2. Name all segments that are parallel to NU.
 - OT, PS, MR

3. Name all segments that intersect MP.
 - NM, OP, PS, MR, MS, NP, OW, TM
For Exercises 4–7, refer to the figure at the right.

4. Name all segments parallel to QX.
 \[\overline{NE}, \overline{MH}, \overline{TD}, \overline{SG}, \overline{RA} \]

5. Name all planes that intersect plane MHE.
 \[\overline{MHO}, \overline{NES}, \overline{MSQ}, \overline{HGX}, \overline{TSG}, \overline{QRA}, \overline{SGE} \]

6. Name all segments parallel to QR.
 \[\overline{XA}, \overline{HO}, \overline{MT} \]

7. Name all segments skew to AQ.
 \[\overline{MT}, \overline{TS}, \overline{NQ}, \overline{QR}, \overline{MH}, \overline{NE}, \overline{TO}, \overline{QX}, \overline{TX}, \overline{NO}, \ldots \]

Distance From a Point to a Line

When a point is not on a line, the distance from the point to the line is the length of the segment that contains the point and is perpendicular to the line.
Example: Draw the segment that represents the distance from \(E\) to \(AF\).
Extend \(AF\). Draw \(EG \perp AF\).
\(EG\) represents the distance from \(E\) to \(AF\).

Exercises:
Draw the segment that represents the distance indicated.

1. \(C\) to \(AB\)

2. \(D\) to \(AB\)
3. T to RS

4. S to PQ

5. S to QR

6. S to RT