Right triangles Ref Sheet

Pythagorean Theorem

\[a^2 + b^2 = c^2 \]

Pythagorean Triplets to memorize:
- 3, 4, 5
- 7, 24, 25
- 5, 12, 13

Just make sure c is the largest side length!

Trigonometry

\[\theta = \text{"theta"} = \text{an angle} = \text{angle formed by hypotenuse and adjacent} \]

\[\sin \theta = \frac{\text{opp}}{\text{hyp}} \]
\[\cos \theta = \frac{\text{adj}}{\text{hyp}} \]
\[\tan \theta = \frac{\text{opp}}{\text{adj}} \]

- Make sure your calculator is on **DEGREES** mode.
- Use inverse trig to find a missing angle:
 - \(\sin^{-1} \) to solve \(\sin x = \# \)
 - \(\cos^{-1} \) to solve \(\cos x = \# \)
 - \(\tan^{-1} \) to solve \(\tan x = \# \)

Special Right Triangles

- **45-45-90 Triangle**
 \[x = \frac{x}{\sqrt{2}} \]

- **30-60-90 Triangle**
 \[x = \frac{x}{\sqrt{3}} \]

Converse of Pythagorean Theorem

- If \(a, b, \) and \(c \) are sides of a \(\triangle \) and...
 - \(a^2 + b^2 < c^2 \), then the \(\triangle \) is obtuse
 - \(a^2 + b^2 = c^2 \), then the \(\triangle \) is right
 - \(a^2 + b^2 > c^2 \), then the \(\triangle \) is acute

How to find missing sides or angles in a right triangle

1. Mark your angle \(\theta \)
 - Label the sides \(\text{opp}, \text{hyp}, \text{adj} \)

2. Choose a trig equation based on what info you have:
 - **Soh Cah Toa**

3. Write the trig equation and fill in the numbers and \(x \)

4. Solve the equation for \(x \):
 - *If \(x \) is a side length, use proportions*
 - *If \(x \) is an angle, use inverse trig

5. Use a calculator to get a final answer

Angles of Elevation and Depression

- **Angle of Elevation** when you look up
- **Angle of Depression** when you look down