19) Suppose J is between H and K. Use the Segment Addition Postulate to solve for x. Then find the length of each segment.

- $HJ = 2x + 4$
- $JK = 3x + 3$
- $KH = 22$

20) Find the coordinate of the midpoint of a segment with the given endpoints A and B.

$A(-3, 5)$ and $B(5, -1)$.
21) Find the coordinates of the other endpoint of the segment with the given endpoint \(A \) and midpoint \(M \). \(A(-4, 3) \) and \(M(-1, -1) \)

True or False?

a) \(\overline{AB} = \overline{BA} \)

b) \(\overline{AB} = \overline{BA} \)

c) \(\overline{AB} = \overline{BA} \)

d) \(\overline{AB} = \overline{BA} \)

e) \(AB = BA \)
E is the midpoint of DF.

a) $DE = 2x - 3, EF = 5x - 24$. Solve for x.

b) $GE = z, GH = 4z + 6, EH = 30$. Solve for z.

c) If $D(6, 3)$ and $F(-4, -3)$, find the coordinates of E.

d) If $D(7, 3)$ and $E(2, 1)$, find the coordinates of F.

M is between O and P with the following measurements:

$OM = x + 8$

$MP = 2x - 6$

$OP = 44$

Is M the midpoint of OP? Justify your answer with an explanation.
Point T is the midpoint of RS. W is the midpoint of RT and Z is the midpoint of WS. If the length of TZ is x, find the lengths of RW, WZ, and RS terms of x.

A, B, and C are three points on a number line.

$AC = BC = 5$. The coordinate of C is 8, and the coordinate of A is greater than the coordinate of B.

What are the coordinates of A and B?
Solve for x and y.

$4 - y - y - 2x - 3y = 30$

\boxed{x}

G, H, and K are three points on a number line. The coordinates of G and H are 4 and -3 respectively. If H is between G and K and $GK = 13$, what is the coordinate of K?
B, the midpoint of AC, has a coordinate of 5. If the coordinate of A is greater than the coordinate of C, and if $BC = 9$, what are the coordinates of A and C?

A segment has midpoint $M(3, -5)$ and one endpoint is $A(2, -4)$. What are the coordinates of B, the other endpoint?
Solve for x.

\[3x \quad 2x + 15 \quad 9x \]

If U is between T and B, find the value of x and the length of TU.

$TU = 1 - x$, $TB = -3x$, $UB = 4x + 17$.
Find the length of the segment in inches, centimeters, and millimeters.

In the figure, CX bisects AB, $AX = 2x + 11$, and $XB = 4x - 5$. Find the length of AB.
Use a ruler to find the perimeter of the rectangle in inches.

$A(-4.5, 1.5)$
$B(6, 1.5)$
$C(-4.5, 8)$
$D(6, 1.5)$

Find each length.

$AB =$
$AC =$
$BD =$
Find x and the perimeter.