19) Suppose J is between H and K. Use the Segment Addition Postulate to solve for x. Then find the length of each segment.

$HJ = 2x + 4$
$JK = 3x + 3$
$KH = 22$

\[
\begin{array}{c}
2x+4 \\
H \\
J \\
K \\
3x+3 \\
22
\end{array}
\]

$HJ + JK = HK$

\[
2x+4 + 3x+3 = 22
\]

\[
5x + 7 = 22
\]

\[
5x = 15
\]

\[
x = 3
\]

$HJ = 10$
$JK = 12$
$HK = 22$

20) Find the coordinate of the midpoint of a segment with the given endpoints A and B. $A(-3, 5)$ and $B(5, -1)$.

\[
\text{midpoint: } \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right)
\]

\[
\left(\frac{-3 + 5}{2}, \frac{5 + (-1)}{2} \right)
\]

\[
\left(\frac{2}{2}, \frac{4}{2} \right)
\]

\[
1, 2
\]

\[
(1, 2)
\]
21) Find the coordinates of the other endpoint of the segment with the given endpoint A and midpoint M. \(A(-4, 3) \) and $M(-1, -1)$

\[
\begin{align*}
\frac{x_1 + x_2}{2} &= x_m \\
\frac{y_1 + y_2}{2} &= y_m \\
-4 + x &= -1 \\
\frac{3 + y}{2} &= -1 \\
-4 + x &= -2 \\
\frac{3 + y}{2} &= -2 \\
x &= 2 \\
y &= -5
\end{align*}
\]

OR

\[
\begin{align*}
\frac{x_1 + x_2}{2} &= x_m \\
\frac{y_1 + y_2}{2} &= y_m \\
-4 + x &= -1 \\
\frac{3 + y}{2} &= -1 \\
-4 + x &= -2 \\
\frac{3 + y}{2} &= -2 \\
x &= 2 \\
y &= -5
\end{align*}
\]

True or False?

\(\bigcirc \) $\overline{AB} = \overline{BA}$ \(\bigcirc \) $\overline{AB} = \overline{BA}$ \(\times \) $\overline{AB} = \overline{BA}$

\(\times \) $\overline{AB} = \overline{BA}$

\(e) \overline{AB} = \overline{BA} \) **TRUE**

Segments are congruent $\rightarrow \overline{AB} \cong \overline{BA}$

Lengths are equal $\rightarrow \overline{AB} = \overline{BA}$
E is the midpoint of \(\overline{DF} \). So \(DE = EF \)

a) \(DE = 2x - 3, \ EF = 5x - 24 \). Solve for \(x \).
\[
2x - 3 = 5x - 24 \\
21 = 3x \\
\Rightarrow x = 7
\]

b) \(GE = z, \ GH = 4z + 6, \ EH = 30 \). Solve for \(z \).
\[
GE + EH = GH \\
24 = 3z \\
8 = z
\]

c) If \(D(6, 3) \) and \(F(-4, -3) \), find the coordinates of \(E \).
\[
\left(\frac{6 + (-4)}{2}, \frac{3 + (-3)}{2} \right) = \left(\frac{2}{2}, \frac{0}{2} \right) = (1, 0)
\]

d) If \(D(7, 3) \) and \(E(2, 1) \), find the coordinates of \(F \).
\[
F(-3, -1)
\]

\(M \) is between \(O \) and \(P \) with the following measurements:
\[
\begin{align*}
OM &= x + 8 \\
MP &= 2x - 6 \\
OP &= 44
\end{align*}
\]

Is \(M \) the midpoint of \(\overline{OP} \)? Justify your answer with an explanation.

\[
OM + MP = OP \\
x + 8 + 2x - 6 = 44 \\
3x + 2 = 44 \\
3x = 42 \\
\Rightarrow x = 14
\]

since \(x = 14 \), \(OM = 22 \) and \(MP = 22 \)

which means \(\boxed{\text{YES}} \)

\(M \) is the midpoint of \(\overline{OP} \)
since it divides the segment into 2 congruent parts.
Point T is the midpoint of RS. W is the midpoint of RT, and Z is the midpoint of WS. If the length of TZ is x, find the lengths of RW, WZ, and RS terms of x.

Let $WT=y$.

Since $RW=WT$, $RW=y$.

We know $WT+TZ=WZ$, and so $y+x=WZ$.

And since $WZ=2x$, we can say $y+x=2x$.

Now, we need an equation we can use to solve for y in terms of x.

\[
\begin{align*}
RT &= TS \\
RW + WT &= TZ + ZS \\
y + y &= x + y + x \\
y &= 2x
\end{align*}
\]

So, $y=2x$.

\[
\begin{align*}
RS &= y + y + x + y + x \\
RS &= 8x
\end{align*}
\]

A, B, and C are three points on a number line.

$AC = BC = 5$. The coordinate of C is 8, and the coordinate of A is greater than the coordinate of B. What are the coordinates of A and B?

B is at 3

A is at 13
Solve for x and y.

\[
\begin{align*}
A & \quad 4 \quad B \quad y \quad C \quad y \quad D \quad 2x - 3y \quad E \\
\hline
x & \\
30
\end{align*}
\]

\[
\begin{align*}
AB + BC + CD &= AD \\
4 + y + y &= x \\
4 + 2y &= x \\
4 + 2(6) &= x \\
16 &= x
\end{align*}
\]

\[
\begin{align*}
AB + BC + CD + DE &= AE \\
4 + y + y + 2x - 3y &= 30 \\
4 + 2x - y &= 30 \\
2x - y &= 26 \\
2(4+2y) - y &= 26 \\
8 + 4y - y &= 26 \\
8 + 3y &= 26 \\
3y &= 18
\end{align*}
\]

\[
y = 6
\]

G, H, and K are three points on a number line. The coordinates of G and H are 4 and -3 respectively. If H is between G and K and $GK = 13$, what is the coordinate of K?

\[
? \quad -3 \quad 4 \\
K \quad H \quad G
\]

\[
13
\]

\[
K \text{'s at } -9
\]
B, the midpoint of AC, has a coordinate of 5. If the coordinate of A is greater than the coordinate of C, and if $BC = 9$, what are the coordinates of A and C?

A segment has midpoint $M(3, -5)$ and one endpoint is $A(2, -4)$. What are the coordinates of B, the other endpoint?
Solve for x.

\[3x + 2x + 15 = 9x \]
\[5x + 15 = 9x \]
\[15 = 4x \]
\[\frac{15}{4} = x \]
\[3\frac{3}{4} = x \]

\[
\text{If } U \text{ is between } T \text{ and } B, \text{ find the value of } x \text{ and the length of } \overline{TU}.
\]
\[TU = 1 - x, \ TB = -3x, \ UB = 4x + 17. \]
Find the length of the segment in inches, centimeters, and millimeters.

\[2 \frac{5}{16} \text{ in.} \quad 6 \text{ cm} \quad 60 \text{ mm} \]

In the figure, \(\overline{CX} \) bisects \(\overline{AB} \), \(AX = 2x + 11 \), and \(XB = 4x - 5 \). Find the length of \(AB \).

\[
\begin{align*}
AX &= XB \\
2x + 11 &= 4x - 5 \\
-7x &= -2x \\
11 &= 2x - 5 \\
4x &= 16 \\
2x &= 8 \\
x &= 4 \\
AB &= AX + XB \\
&= 2(8) + 11 + 4(8) - 5 \\
&= 16 + 11 + 32 - 5 \\
&= 54
\end{align*}
\]
Use a ruler to find the perimeter of the rectangle in inches.

\[P = \frac{7}{8} + 2\frac{3}{4} + \frac{7}{8} + 2\frac{6}{8} \]

\[= 6 + \frac{26}{8} = 6 + 3\frac{2}{8} = 9\frac{1}{4} \text{ in.} \]

\[A(-4.5, 1.5) \]
\[B(6, 1.5) \]
\[C(-4.5, 8) \]
\[D(6, 1.5) \]

Find each length.

\[AB = 10.5 \]
\[AC = 6.5 \]
\[BD = 0 \text{ (same point)} \]
Find x and the perimeter.

$53 + 40 = x + 61$

$x = 32$

BAD QUESTION! TYPO made this an impossible diagram