6.3 Sampling Distributions and CLT

Recall...

Statistics

- $\bar{X} = \text{Sample mean}$
- $S_x = \text{Sample standard deviation}$
- $n = \text{Sample size}$

 (# of data values in sample)

Parameters

- $\mu = \mu_x = \text{population mean}$
- $\sigma = \sigma_x = \text{Population Std deviation}$
- $N = \text{population size}$
Sampling Distribution:

a data display that shows the values of a certain statistic \(\frac{\text{like}}{X} \)

\[\mu_X = \text{the mean of the sample means} \]
\[u_X = u_X \]

\[\sigma_X = \text{the standard deviation of the sample means} \]
\[\sigma_X = \frac{\sigma_X}{\sqrt{n}} \quad \text{if } n \leq 10\% \text{ of } N \]
The sampling distribution of \bar{x}
is approx Normal if...

- The population distribution of x is approx Normal

OR - $n \geq 30$ (according to the Central Limit Theorem)
Central Limit Theorem:

As n increases, the sampling distribution for \bar{X} will become normal (and 'skinnier')

* $\mu_{\bar{X}}$ stays the same ... $\mu_{\bar{X}} = \mu_X$

* $\sigma_{\bar{X}}$ gets smaller ... $\sigma_{\bar{X}} = \frac{\sigma_X}{\sqrt{n}}$
Ex.

Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages of 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch television will be greater than 26.3 hours.
Ex.

Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages of 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch television will be greater than 26.3 hours.

\[\mu_x = 25 \quad \mu_{\bar{x}} = 25 \]
\[\sigma_x = 3 \quad \sigma_{\bar{x}} = \frac{3}{\sqrt{20}} \]
\[n = 20 \]

\[\text{normalcdf}(26.3, 1000, 25, \frac{3}{\sqrt{20}}) \]

\[\approx 0.0267 \]
Ex.

The average age of a vehicle registered in the United States is 8 years (or 96 months). Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months.
Ex.

The average age of a vehicle registered in the United States is 8 years (or 96 months). Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months.

\[
\begin{align*}
P(90 < \bar{x} < 100) &= \text{normalcdf}(90, 100, 96, \frac{16}{\sqrt{36}}) \\
&\approx 92\%
\end{align*}
\]

\[
\begin{align*}
\mu_x &= 96 \\
\sigma_x &= 16 \\
\sigma_{\bar{x}} &= \frac{16}{\sqrt{36}} \\
n &= 36
\end{align*}
\]