6.1 / 6.2 Applications for a Normal Curve

Recall... if "normally distributed":

- Sketch a normal curve
- Label the mean (μ) and any boundary values
- Shade the region

\[
P(x_L < x < x_U) = \text{normalcdf}(x_L, x_U, \mu, \sigma)
\]

area = area between x_L and x_U

- Use if asked to find area or probability or proportion or percent

\[
x^* = \text{invNorm}(\text{percentile}, \mu, \sigma)
\]

x^* = x value

- Use if asked to find an x-value

If an SRS of size n is taken and you need to find the probability the mean is:

\[
P(\overline{x}_L < \overline{x} < \overline{x}_U) = \text{normalcdf}(\overline{x}_L, \overline{x}_U, \mu_{\overline{x}}, \sigma_{\overline{x}})
\]

\overline{x} → \overline{x}_L $\mu_{\overline{x}}$ \overline{x}_U

- Normal if... \overline{x} is normally distributed
- $n \geq 30$

* If z use $\mu = 0, \sigma = 1$

* If $-\infty$ use -100000
 ∞ use 100000