9.2 Tests about a Population Proportion

H: State the hypotheses \(H_0 \) and \(H_a \)

\[H_0: \hat{p} = p_0 \]

A: Check the assumptions/conditions:

- Random sample
- \(n \leq 10\% \) of population
- \(np_0 \geq 10 \) and \(n(1-p_0) \geq 10 \)

Sampling dist. is approx. Normal

M: Do some math and calculate a \(P \)-value using test statistic (\(\hat{p} \) turned into a \(Z \))

Standardized test statistic = \(Z = \frac{\text{Statistic} - \text{Parameter}}{\text{Std dev of statistic}} \)

\[Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}} \]

\(P \)-value *To calculate \(P \)-value, \(= \text{normalcdf}(\) \(\) \() \)

C: Conclude whether to Reject \(H_0 \)

(in favor of \(H_a \)) or Fail to reject \(H_0 \)

with Context

If \(P \)-value is low \((P<\alpha) \), Reject \(H_0 \).

If not \((P>\alpha) \), Fail to Reject \(H_0 \).
9.3 Tests about a Population Mean

H: State the hypotheses \(H_0 \) and \(H_a \)
\(H_0: \mu = \mu_0 \)

A: Check the assumptions/conditions:
- Random sample
- \(n \leq 10\% \) of population
- \(n \geq 30 \) or population distribution is approx. normal
- Sample size is not strongly skewed with no outliers

M: Do some math and calculate a p-value using test statistic (\(\bar{x} \) turned into a \(t \))

\[
\text{test statistic} = t = \frac{\text{Statistic} - \text{Parameter}}{\text{std dev of statistic}}
\]

\[
t = \frac{\bar{x} - \mu_0}{\frac{S_x}{\sqrt{n}}}
\]

\# If \(\sigma \) is known... use \(Z \) instead of \(t \) (very rare)

*To calculate p-value, \(p \)-value = \(tcdf(\) __)

C: Conclude whether to Reject \(H_0 \)
(in favor of \(H_a \)) or Fail to reject \(H_0 \)

With Context
- If \(p \)-value is low (\(P < \alpha \)), Reject \(H_0 \).
- If not (\(P > \alpha \)), Fail to Reject \(H_0 \).