Ex. Find the measure of \(TU \).

\[32 - 20 = 12 \]
\[TU = 12 \]

Segment Addition Postulate

- If \(B \) is between \(A \) and \(C \), then \(AB + BC = AC \).
- If \(AB + BC = AC \), then \(B \) is \text{ in between } \(A \) and \(C \).

Ex 1. \(S \) is between \(T \) and \(V \). \(R \) is between \(S \) and \(T \). \(T \) is between \(R \) and \(Q \). \(QV = 18, QT = 6 \), and \(TR = RS = SV \). Make a \textit{sketch} and answer the following.

\[6 + x + x + x = 18 \]
\[6 + 3x = 18 \]
\[3x = 12 \]
\[x = 4 \]

a. \(RS = \frac{4}{x} \)

b. \(QS = \frac{14}{6 + x + x} \)

\[2 \cdot x \]
\[6 + 8 \]

c. \(TS = \frac{8}{3x} \)

d. \(TV = \frac{12}{3x} \)
Ex 2. If $RS = 8y + 4$, $ST = 4y + 8$, and $RT = 15y - 9$,

Find the value of y and the lengths of RS, ST, and RT.

Is $RS \cong ST$? **No**

\[
\begin{align*}
RS + ST &= RT \\
(8y + 4) + (4y + 8) &= 15y - 9 \\
12y + 12 &= 15y - 9 \\
12y - 12y &= 15y - 12y - 9 \\
0 &= 3y - 9 \\
\frac{3y - 9}{3} &= y \\
7 &= y
\end{align*}
\]

Segment Addition Post.

\[
\begin{align*}
RS &= 8y + 4 = 8 \cdot 7 + 4 = 60 \\
ST &= 4y + 8 = 4 \cdot 7 + 8 = 36 \\
RT &= 15y - 9 = 15 \cdot 7 - 9 = 96 \checkmark
\end{align*}
\]

Ex 3. Suppose J is between H and K. Use the Segment Addition Postulate to solve for x.

Then find the length of each segment.

\[
\begin{align*}
HJ &= 2x + \frac{1}{3} \\
JK &= 5x + \frac{2}{3} \\
KH &= 12x - 4
\end{align*}
\]

\[
\begin{align*}
HJ + JK &= HK \\
2x + \frac{1}{3} + 5x + \frac{2}{3} &= 12x - 4 \\
7x + 1 &= 12x - 4 \\
-7x &= 5x - 4 \\
1 &= 5x - 4 \\
\frac{1}{5} &= x
\end{align*}
\]

HJ: $2(\frac{1}{3}) = \frac{2}{3}$

JK: $5(\frac{2}{3}) = \frac{10}{3}$

HK: $12(\frac{1}{3}) - 4 = 8 \checkmark$

You Try! 1. Find the value of x and all of the missing segment lengths.

\[
\begin{align*}
13 + 6 + 2x - 18 &= 4x - 29 \\
2x + 1 &= 4x - 29 \\
\frac{1}{2} &= 2x - 29 \\
36 &= 2x \\
15 &= x
\end{align*}
\]

\[
\begin{align*}
UV &= 2(15) - 18 = 30 - 18 = 12 \\
SV &= 4(15) - 29 = 31
\end{align*}
\]
You Try! 2. Find value of \(y \) and \(QP \) given the information in the figure.

\[
\begin{align*}
2y + 21 &= 3y + 1 \\
-2y & \quad -2y \\
21 &= y + 1 \\
-1 & \quad -1 \\
20 &= y \\
\end{align*}
\]

\[
\begin{align*}
Q &= 2y \\
&= 20 \\
QP &= 40
\end{align*}
\]

You Try! 3. Find \(x \) and \(BC \) if \(B \) is between \(A \) and \(C \), \(AC = 4x - 12 \), \(AB = x \), \(BC = 2x + 3 \).

Draw and label a picture!

\[
\begin{align*}
2x + 3 &= 4x - 12 \\
-2x & \quad -2x \\
3 &= x - 12 \\
+12 & \quad +12 \\
15 &= x
\end{align*}
\]

\[
BC = 2x + 3 \\
= 2 \cdot 15 + 3 \\
= 30 + 3 \\
= 33
\]

You Try! 4. Find the value of \(x \) and each segment length if \(L \) is between \(N \) and \(M \), \(NL = 6x - 5 \), \(LM = 2x + 3 \), \(NM = 30 \). Draw and label a picture!

\[
\begin{align*}
6x - 5 & \quad 2x + 3 \\
N & \quad L \\
\end{align*}
\]

\[
\begin{align*}
6x - 5 + 2x + 3 &= 30 \\
8x - 2 &= 30 \\
+2 & \quad +2 \\
8x &= 32 \\
\frac{8x}{8} &= \frac{32}{8} \\
x &= 4 \\
NL &= 19 \\
LM &= 11
\end{align*}
\]
Ex 4. Given the information in the figure, find WX.

$WX + XY = 6$
$WX = XY$
$WX + WX = 6$

$2WX = 6$
$\frac{2WX}{2} = \frac{6}{2}$
$WX = XY = 3$

Ex 5. Given S is between R and T and $RS = 4x, RS \cong ST$ and $RT = 24$, solve for x and find all the segment lengths.

$4x + 4x = 24$
$8x = 24$
$x = 3$

$RS = ST = 4 \cdot 3 = 12$

Ex 5. Find the perimeter of the shape shown in the figure.

Add up all the sides!!

$3x + 5 = 5x - 1$
$-3x
$5 = 2x - 1$
$+1
$\frac{5}{2} = 2x
$\frac{1}{2}$
$3 = x$

Need $XY, XZ + YZ$

Sides are congruent

$XY = 3 \cdot 3 + 5 = 9 + 5 = 14$
$XZ = 5 \cdot 3 - 1 = 15 - 1 = 14$
$YZ = 9 \cdot (3) = \frac{27}{2} = 13 \frac{1}{2}$

$P = XY + XZ + YZ$
$= 14 + 14 + 13 \frac{1}{2}$
$P = 41 \frac{1}{2}$

GE Segment addition postulate KFC 2019

4